This device will allow the marines to make drinking water from thin air

It can generate over 15 gallons in a day, or enough water for a squad of marines.
A representative of U.S. Indo-Pacific Command Logistics Science and Technology briefs distinguished visitors on the Atmospheric Portable-water Sustainment Unit and Lightweight Water Purification System at Marine Corps Base Hawaii,
The Atmospheric Portable-water Sustainment Unit and Lightweight Water Purification System installed at Marine Corps Base in Hawaii. Cpl Patrick King / DVIDS

Share

An army may march on its stomach, but it can’t march at all if the soldiers don’t have water. To ensure that its forces are always able to hydrate wherever they operate, this year, the Marine Corps has been testing a machine that can pull drinkable water out of the air. Called the Atmospheric Portable-water Sustainment Unit, when paired with a water purification system it can generate over 15 gallons in a day, or enough water for a squad of marines.

Capt. Sean Conderman, of the 3rd Marine Littoral Regiment’s combat logistics battalion at MCBH, told The Honolulu Star-Advertiser that it’s in essence a small dehumidifier paired with a purifier. “We can mount it basically on any vehicle, and what it does is it pulls water out of the air to give us potable water without having to connect to an actual water source.” He further elaborated to The Star Advertiser that this device would be ideal in humid environments like the ones across the United States Indo-Pacific Command. 

The Atmospheric Portable-water Sustainment Unit, or APSU, is paired with the Corps’ Lightweight Water Purification System, to ensure that the water it pulls from the atmosphere is drinkable. This system generates 15 to 20 gallons of drinkable water every 24 hours. Since the Corps recommends “three to four and a half quarts (96–144 fl oz) of fluid per day for men and two to three quarts (64–96 fl oz) for women,” using the high end of the recommendations, the system can sustain 13 men, or 20 women. With variable water consumption rates across people, and production of up to 20 gallons, a single unit could sustain at least one squad, possibly a squad and a half.

Drinking water is a necessity anywhere the military operates. In the Pacific or other humid environments, it can turn the oppressively moist air into an asset, freeing forces up from a reliance on known streams, instead letting them drink from the sky. 

Snowbird Water Technologies built the APSU for the military, which it describes as an “Air Water Generator.” The air water generator “produces water from air, using an extremely efficient process by which condensation is collected and treated with an ozonator and UV light, ensuring safe and potable drinking water is produced at the tactical edge of the battlefield.

Snowbird first announced their contract with the military in April 2021, highlighting that the system can fit on the back of trailers or vehicles. Being able to bring a water generator into the field means that the water supply is constrained only by the availability of power and storage.

One possibility this opens up is that soldiers or marines could set up temporary camps in austere places where shipping in drinking water would be more trouble than it’s worth.

As the marine corps revisits its pacific past and considers island campaigns, one challenge is resupply. Logistics, or the process of getting forces in the field everything they need, is a hard problem, and it is harder over sea and in war zones. A marine regiment that can supply its own water will still need some aid: everything from food to bullets to medical supplies are depreciating quantities in war. But the ability to free itself from dependence on local water supplies, which this Atmospheric Portable-water Sustainment Unit promises, could let the marines go longer between supply drops, or move through otherwise impassible routes without sacrificing health.

For centuries, the most meaningful constraint on a military was how much food it could carry on the march (or forage in the field), and that was along routes premised on water being available. 

The ability to bring water resupply into the field expands where an army can go, and how long it can operate. Often, battles have been forced by soldiers desperate for supply seeking what they can before rations run out. With at least water resupply on hand (for as long as there’s power to run the water generator), a unit can wait, choosing instead to raid when it is most advantageous to do so.