We're this close to having a usable biocomputer.

DNA Double Helix
DNA Double Helix National Human Genome Research Institute

Pretty much anything can be a computer, if it can compute logical functions, store data, and transmit information -- even living cells. A team at Stanford University has accomplished one of the the final tasks necessary to turn cells into working computers: They've created a biological transistor, called a transcriptor, that uses DNA and RNA instead of electrons and responds to logical functions.

Drew Endy, an assistant professor of bioengineering, has previously made other vital contributions to biocomputing. Last year, his lab developed a "biological Internet" that can transmit genetic information between cells, as well as a rewritable data storage system for DNA.

Building a system with logic gates that can compute true-false answers from biochemical information is the third component in creating a biological computer. The work is detailed online in Science.

Rather than regulating electrons along a wire, the transcriptor controls the flow of RNA polymerase (the enzyme that produces RNA) along a strand of DNA. To create biocomputers that would be able to function across a wide variety of organisms, the researchers used enzymes that function in animals, plants, bacteria and fungi. Like a transistor, which amplifies electrical signals to allow them to travel farther, the transcriptor can amplify genetic logic, allowing small changes in enzyme activity to trigger much larger changes in gene expression.

Because it can compute digital logic (with Boolean Integrase Logic gates, or, awesomely, BIL gates) it could tell you if the cell has been exposed to stimuli like caffeine or glucose. You could program the cell to start or stop reproducing based on certain factors, and using Endy's biological Internet, coordinate behavior across groups of cells.

This could allow us to one day detect disease and deliver medicine from within the body itself. The researchers have put their work into the public domain in the hopes that other scientists will build upon their research and usher in the biocomputing age as quickly as possible.

[Extreme Tech]

3 Comments

Very cool!

only thing missing is 666 encoded in it......government will find great use for this

While Star Trek fantasy of going faster than light speed multiple warp speeds seems currently impossible, the idea of the BORG is an approaching reality!


140 years of Popular Science at your fingertips.



Popular Science+ For iPad

Each issue has been completely reimagined for your iPad. See our amazing new vision for magazines that goes far beyond the printed page



Download Our App

Stay up to date on the latest news of the future of science and technology from your iPhone or Android phone with full articles, images and offline viewing



Follow Us On Twitter

Featuring every article from the magazine and website, plus links from around the Web. Also see our PopSci DIY feed


April 2013: How It Works

For our annual How It Works issue, we break down everything from the massive Falcon Heavy rocket to a tiny DNA sequencer that connects to a USB port. We also take a look at an ambitious plan for faster-than-light travel and dive into the billion-dollar science of dog food.

Plus the latest Legos, Cadillac's plug-in hybrid, a tractor built for the apocalypse, and more.


Online Content Director: Suzanne LaBarre | Email
Senior Editor: Paul Adams | Email
Associate Editor: Dan Nosowitz | Email
Assistant Editor: Colin Lecher | Email
Assistant Editor:Rose Pastore | Email

Contributing Writers:
Rebecca Boyle | Email
Kelsey D. Atherton | Email
Francie Diep | Email
Shaunacy Ferro | Email

circ-top-header.gif
circ-cover.gif
bmxmag-ps