Material World
Yarn muscles could launch catapults, power intelligent textiles, and help robots move more weight.

Nano Muscle Fibers These scanning electron microscope images show a carbon nanotube yarn that has incredible tensile strength. The upper image shows a highly coiled, wax-filled carbon nanotube yarn that maximizes tensile contraction during actuation. The lower image shows a two-ply carbon nanotube yarn that can be deployed as a torsional muscle in a motor. Courtesy of Science/AAAS

Artificial muscles will offer future robots greater flexibility and lighter weight than a machine joint, expanding and contracting again and again. Although there are plenty of awesome robotic examples and prototype bionic uses, artificial muscles have been limited by many factors, like their response times or their power requirements. Now comes a new nanofiber muscle combining carbon nanotubes with candle wax, which might outperform any previous artificial muscle.

These nanotube fibers can lift more than 100,000 times their own weight and generate 85 times more mechanical power during contraction than natural muscles of the same size, according to scientists at the University of Texas at Dallas and collaborators from Australia, China, South Korea, Canada and Brazil.

They work by combining a waxy substance with a yarn made of carbon nanotubes. The wax expands in response to heat (or a voltage), and the yarn volume increases while its length contracts. This happens because it’s twisting, as a news release from UT Dallas explains. As the wax melts or solidifies, it twists and untwists, generating motion. The yarn can be looped, sewn, braided or whatever else you do with yarn, so it could be easy to use it in new types of textiles. You could design blankets that get thinner when it’s warm, maybe, or tapestries that tell you which chemicals are in the air.

Yarn muscle could be commercialized for small motors, the researchers say. Unfortunately, they won’t be replacing our fragile human parts anytime soon.

“While we are excited about near-term applications, these artificial muscles are presently unsuitable for directly replacing muscles in the human body,” said the research team leader, UT Dallas chemistry professor Ray Baughman.

The paper will be published tomorrow in the journal Science.

4 Comments

So these muscles generate around 85 times more force than human muscles, meaning an android about the size of an adult male with a musculature system of these things would probably be able to bench press more than 10 tons. The comic book nerd in mean can't help but imagine a suit of power armor with these things.

@Nonapod

Watch out for heat based weapons in your power suit...

Ya know...... if this fabric was made into pants. At the end of the day when you want to remove you pants, just plug them in and they can spit you out, LOL!

Mmmm, well in my imagination it seems to work,
lol.... snort.

Artificial muscles like these could greatly simplify the complexity and cost of making a walking robot. I hope they get together with someone like Sony or Yamaha, who have spent a lot of effort in building walking robots. The reliance on motors and gears has got to be a limiting factor in the performance of these machines.


140 years of Popular Science at your fingertips.

Innovation Challenges



Popular Science+ For iPad

Each issue has been completely reimagined for your iPad. See our amazing new vision for magazines that goes far beyond the printed page



Download Our App

Stay up to date on the latest news of the future of science and technology from your iPhone or Android phone with full articles, images and offline viewing



Follow Us On Twitter

Featuring every article from the magazine and website, plus links from around the Web. Also see our PopSci DIY feed


February 2013: How To Build A Hero

Engineers are racing to build robots that can take the place of rescuers. That story, plus a city that storms can't break and how having fun could lead to breakthrough science.

Also! A leech detective, the solution to America's train-crash problems, the world's fastest baby carriage, and more.



Online Content Director: Suzanne LaBarre | Email
Senior Editor: Paul Adams | Email
Associate Editor: Dan Nosowitz | Email

Contributing Writers:
Clay Dillow | Email
Rebecca Boyle | Email
Colin Lecher | Email
Emily Elert | Email

Intern:
Shaunacy Ferro | Email

circ-top-header.gif
circ-cover.gif