A $120 million Earth-based telescope using brand new adaptive optics just trumped Hubble's deep space image clarity three-fold, but such high tech optics aren't just reserved for high-dollar observatories. A breakthrough in deformable liquid mirror technology could drastically reduce the price associated with adaptive optics, making the best in high-tech telescopes more widely available.

When light from space passes through the atmosphere it degrades, giving earth-based telescopes a murky picture of the cosmos. To compensate, adaptive optics systems employ either very thin, pliable mirrors or honeycomb arrays of tiny hexagonal mirrors that can be adjusted to compensate for the light degradation, undoing the effects of atmosphere on light.
Liquid mirrors, however, could come back into fashion in a big way thanks to some developments that make them act like adaptive optics systems without requiring the adaptive optics price tag. Using a ferromagnetic liquid (rather than mercury), researchers pioneered a novel way to create deformable liquid mirrors a few years back, but there were some problems. For one, the magnetic fields used to deform the liquid couldn't be cycled quickly enough to be useful in astronomy. For another, there was a non-linear disconnect between the deformation of the mirror and the magnetic field strength that required a highly complex algorithm to be built from scratch.
Now, those same researchers from the Université Laval in Quebec have published a paper saying they've resolved those problems. They now claim they can cycle their magnetic fields 100 times faster, and by applying a second uiform magnetic field atop the original one they've eliminated that disconnect between deformity and magnetic field strength.
Another way of saying all that: They've achieved a high degree of control over their liquid mirrors, and they can do it with off-the-shelf algorithms written for conventional adaptive optics systems. That means these powerful optics can be build for a relative pittance, bringing observatory-strength optics to the masses.
140 years of Popular Science at your fingertips.
Each issue has been completely reimagined for your iPad. See our amazing new vision for magazines that goes far beyond the printed page
Stay up to date on the latest news of the future of science and technology from your iPhone or Android phone with full articles, images and offline viewing
Featuring every article from the magazine and website, plus links from around the Web. Also see our PopSci DIY feed
Engineers are racing to build robots that can take the place of rescuers. That story, plus a city that storms can't break and how having fun could lead to breakthrough science.
Also! A leech detective, the solution to America's train-crash problems, the world's fastest baby carriage, and more.


Online Content Director: Suzanne LaBarre | Email
Senior Editor: Paul Adams | Email
Associate Editor: Dan Nosowitz | Email
Contributing Writers:
Clay Dillow | Email
Rebecca Boyle | Email
Colin Lecher | Email
Emily Elert | Email
Intern:
Shaunacy Ferro | Email
Until they can overcome not being able to point the thing, I think it will have a very limited adaption.
@ufcwarrior
Wouldn't binoculars work for that? lol
Anyway, the most important aspect of this tech is definitely the need for more amateur and professional astronomers to have access to a clarity of image that can assist in the search for planetary systems. Already with Kepler and CoRot alone we have more information to sort through than I can almost imagine. It will be nice having a larger base of telescopes to examine the individual star systems that show promise for earth-like planets. More clear eyes on the sky can only be a good thing!
Oh, that is perfect! As soon as I read, "Ferromagnetic liquid" I facepalmed and wondered why I'd never thought of that! Brilliant idea, and brilliant work, as this article shows!
That said, I'd love to look on the shelf in 20 years and buy a son or daughter a telescope nearly as powerful as the Hubble for just a few hundred dollars.