
Forty years ago, the National Transportation Safety Board began urging railroads to design a way for a train to stop itself if the engineer “loses situational awareness”—that is, has a heart attack, falls asleep, gets distracted, or makes an all-too-human mistake. It wasn’t like NTSB was asking railroads to find a cure for cancer. As early as the 1920s, the Santa Fe rail line between Kinsley and Dodge City, Kansas, used a rudimentary system to stop a train if it passed a red signal. In the mid-1980s, in the Minnesota iron range, Burlington Northern successfully operated the first GPS-based system to stop a train automatically if the engineer made a mistake; it dropped it within the decade, to save money.
Railroaders call such technology—systems that slow or stop a train without human intervention when the engineer makes a dangerous mistake—positive train control (PTC). The modern version requires the train to be “aware” both of what it is doing and what is happening on the tracks ahead, using a combination of data radios, GPS, and cellular networks. If a discrepancy arises—a switch is open that shouldn’t be or the locomotive is passing a red signal—and the engineer doesn’t respond, the system takes control of the train, applying the air-brakes and shutting down the locomotive.
In 1990, the NTSB put positive train control on its list of most-wanted transportation-safety improvements. The NTSB, though, has no regulatory authority, so the five U.S. Class I freight railroads—Burlington-Northern Santa Fe, CSX, Union Pacific, Norfolk Southern, and Kansas City Southern, all of which have annual operating revenues of hundreds of millions of dollars—simply ignored the agency. Only Amtrak responded, installing a type of positive train control on its Northeast Corridor trains in 2000 and a different version on some of its trains in the Midwest a year later. The Federal Railroad Administration, the railroads’ regulator, had the power to make the Class I’s fall in line behind Amtrak, but instead, the agency agreed with the Class I’s: Positive train control was too expensive.
In 2007, Congress finally got involved, passing a law mandating positive train control, but President George W. Bush refused to sign it. Then came Chatsworth.
As a passenger-rail engineer, Robert Sanchez was, quite literally, a train wreck waiting to happen. Clinically obese, with high blood pressure, enlarged heart valves, diabetes, and HIV, he may also have had sleep apnea, which can leave sufferers perpetually sleep-deprived. To make matters worse, his work schedule at Metrolink, the commuter rail service for the Los Angeles basin, seemed designed to leave a man exhausted. Sanchez started at six in the morning, drove trains until 9:30 in the morning, then started again at two in the afternoon and worked until nine at night—a 15-hour split shift.
Yet the issue on September 12, 2008, was neither his health nor his exhaustion. As he drove his three-car train loaded with passengers west from Chatsworth, Sanchez was busy swapping text messages with a teenage train buff about the supercool world of locomotives—a huge violation of company policy. Four days before, he’d had this text exchange with the teenager, whom the NTSB calls “Person A”:
Sanchez: Yea....but I’m REALLY looking forward to getting you in the cab and showing you how to run a locomotive.
Person A: Omg dude me too. Running a locomotive. Having all of that in the palms of my hands. Its a great feeling. And ill do it so good from all my practice on the simulator.
Sanchez: I’m gonna do all the radio talkin’...ur gonna run the locomotive & I’m gonna tell u how to do it.

Later texts suggest that Sanchez had indeed illegally let the teenager operate the train—two days before the accident—with passengers aboard.
On the afternoon of September 12, in the last 69 minutes of his life, Sanchez exchanged 35 text messages with the teenager. Focused on his smartphone, he missed a red signal that should have held him back from a single track shared by freight lines. At 4:22 p.m., the engineer of a westbound Union Pacific train looked up and saw Sanchez’s train coming at him at a combined speed of 80 miles an hour. The engineer hit his air brakes. Sanchez, texting until 22 seconds before impact, never touched his.
The collision drove Sanchez’s locomotive 52 feet into the first passenger rail car, killing Sanchez and all 22 people in the car. Two more passengers also died; 101 were injured. On the freight train, the engineer, conductor, and brakeman somehow all survived.
Television crews arrived fast, and the Chatsworth crash became, for the issue of rail safety, what 9/11 was to aviation security. It escaped nobody’s attention that had positive train control been in place at Chatsworth, Sanchez never would have reached the freight track; the system would have stopped his train at the red signal. Congress hastily revived the 2007 mandate and folded it into the Rail Safety Improvement Act of 2008, which flew through Congress in just 34 days. The president signed it late at night with no ceremony. The nation’s railroads were given until 2015 to install positive train control on the 70,000 miles of track on which passengers or toxic-by-inhalation chemicals moved. In the emotional aftermath of Chatsworth, neither the railroads nor the Federal Railroad Administration objected.
That came later.
single page140 years of Popular Science at your fingertips.
Each issue has been completely reimagined for your iPad. See our amazing new vision for magazines that goes far beyond the printed page
Stay up to date on the latest news of the future of science and technology from your iPhone or Android phone with full articles, images and offline viewing
Featuring every article from the magazine and website, plus links from around the Web. Also see our PopSci DIY feed
Engineers are racing to build robots that can take the place of rescuers. That story, plus a city that storms can't break and how having fun could lead to breakthrough science.
Also! A leech detective, the solution to America's train-crash problems, the world's fastest baby carriage, and more.


Online Content Director: Suzanne LaBarre | Email
Senior Editor: Paul Adams | Email
Associate Editor: Dan Nosowitz | Email
Contributing Writers:
Clay Dillow | Email
Rebecca Boyle | Email
Colin Lecher | Email
Emily Elert | Email
Intern:
Shaunacy Ferro | Email
Great article. Thank you.
'I think I can' not!
'I think I can' not!
I not.
It's amazing that there are any accidents these days with computers and monitors and central facilities. Just a really stupid industry if they have a single accident which there is no need for that if everything automated and tied in to a central core. Stupid people living in the 1900's still.
Air conditioned sheds? Sounds like an Electrical engineer's solution. Surely there is a passive solution that's more reliable and efficient than a window unit.
$10 billion + $850 million a year to maybe prevent 7 deaths and 22 injuries a year sounds like a system designed by a Congressional committee. How much would it have cost to install an image sensor and loud alarm that blares "YOU MISSED A RED LIGHT!" in each engine instead of the uber-complicated positive train control? The safest transportation system in the world, commercial aviation, doesn't have a positive control system. Why couldn't a similar system of transponders installed on trains suffice?
@laurenra7
I believe because trains change length. Car's arent even the same length, so 2 trains 20 cars long won't be a consistant length. So if it transpsonder picked up a train a mile away how does it know how much time it has to stop? I've thought about it before because we have trains that tend to stop in the middle of town and depending on how long they are they will block intersections. The trains don't care, they just stop at the red light. The fun part is getting the front to know where the back is. Does every car need a sensor? Seems expensive. Designate an oversized standard for car size? (cars average 50 ft, so use 65ft x 20 cars = train length) Not very exact, but cheap and relies on correct information. Have a sensor beside the track to ping the front/back of a train and keep that info in the "train cloud?" Maybe, since they are investing so much in these light posts they could probably do double duty.
What is needed are smart robotic trains. A new global re-design that will automate all these error prone jobs.
Look what we're doing with the self-driving car and the train is already self-driving!
johnt007871, it was purely speculative, but what I was thinking about was a relatively inexpensive image sensor mounted at the front of the train (sometimes the engine is at the back), designed to watch for train signal lights that are red. It would measure speed, calculate for estimated mass (or number of train cars) and sound a loud alarm if the train is approaching a red light too fast to stop. It won't prevent all possible rail accidents, but it would minimize the risk of some. The point being that railroad travel in the U.S. is already remarkably safe and these complicated and expensive positive train control systems are unwarranted, given that not even the incredibly safe commercial aviation industry has anything like it.
As an engineer with 27years experience there is a lot in this article that has been addressed like cell phones are not allowed on your person at all.and the hours of service has been changed to prevent over work and sleep deprivation. On the northeast corridor we have cab signals that if you ran a signal the train would stop automatically so things are not as bad as they make it out to be.now that being said there is no excuse for crews not doing there job to the best of their ability like leavening switches open .that was a crew and dispature failure ,
If the railroads had applied targeted implementation, they would be facing much less expensive options. One would be commuter rail were fatalities are most probable. Putting laser scanning devises and cameras with train, car, and pedestrian recognition software, on commuter trains first. This is already done in self driving cars. Collision avoidance is in their future anyway, swallow a little pride call the car companies, or create a DARPA like x-prize for grad student to fix this for them. They could just throw money away until they implement the most antiquated solution. Only to have it replaced several times. They should also consider the rail as a possible network cable sending messages to sound boxes that tap out messages to other trains that pick them up by lasers reflecting on the rail. The rail is everyplace and can even communicate with a train in a tunnel. Either way we will do this again until we get it right, or we could plan how to do it cost effectively.
gimowitz, please re-read the article. The issue raised by the article is that the MAJORITY of the nations rail system is NOT effectively, adequately and accurately monitored.
Any system can be "computer-monitored" using one sensor. The question is then the value of the monitoring. Is one sensor enough? If not, then how many and where are they needed? Systems are rarely static. Most expand. Does the monitoring expand as well?
Remarkably, the writer of this column either failed to locate, or located but chose not to use, this significant report of the Federal Railroad Administration:
“Report to Congress: Positive Train Control Implementation Status, Issues, and Impacts”
August 2012
Notably, from the Executive Summary:
“…this effort is hampered by the novel nature of the issues. PTC implementation, on the scale required by the RSIA, has never been attempted anywhere in the world.”
and
“However, since FRA approved the PTCIPs, both freight and passenger railroads have encountered significant technical and programmatic issues that make accomplishment of these plans questionable. Given the current state of development and availability of the required hardware and software, along with deployment considerations, most railroads will likely not be able to complete full RSIA-required implementation of PTC by December 31, 2015. Partial deployment of PTC can likely be achieved; however, the extent of which is dependent upon successful resolution of known technical and programmatic issues and any new emergent issues.”
Read the entire report here:
www.fra.dot.gov/eLib/Details/L03718
Further from the Executive Summary:
“Although the initial PTC Implementation Plans (PTCIP) submitted by the applicable
railroads to the Federal Railroad Administration (FRA) for approval stated they would
complete implementation by the 2015 deadline, all of the plans were based on the assumption that there would be no technical or programmatic issues in the design, development, integration, deployment, and testing of the PTC systems they adopted. However, since FRA approved the PTCIPs, both freight and passenger railroads have encountered significant technical and programmatic issues that make accomplishment of these plans questionable. Given the current state of development and availability of the required hardware and software, along with deployment considerations, most railroads will likely not be able to complete full RSIA-required implementation of PTC by December 31, 2015. Partial deployment of PTC can likely be achieved; however, the extent of which is dependent upon successful resolution of known technical and programmatic issues and any new emergent issues.
“The technical obstacles that have been identified to date fall into seven different categories:
• Communications Spectrum Availability
• Radio Availability
• Design Specification Availability
• Back Office Server and Dispatch System Availability
• Track Database Verification
• Installation Engineering
• Reliability and Availability
“The programmatic obstacles fall into two categories:
• Budgeting and Contracting
• Stakeholder Availability
“To date, railroads have raised and expended more than $1.5 billion of private capital to try and resolve these issues. The Federal Government has distributed $50 million through the Railroad Safety Technology Grant Program. Solutions to these issues have either not been identified or cannot be implemented by the current December 31, 2015, deadline.”
Read the entire report and weep. The complexity of this endeavor, with the incumbent “vital” (essentially absolutely failsafe) technological requirements if even the marginal economic benefits are to be realized, virtually assures the failure of the project.
If the (worthy) objective of saving lives were to be optimized by Congressional diktat to expend $15 billion on railroad infrastructure, then surely PTC would rank well below isolation of railroad right-of-way to avoid collisions of trains with trespassers and motor vehicles.
I really think they should have automated trains
@Railronin; Out west it's different. We have some seriously remote places out here that crews have to get to in order to have a safe place to change out, and it happens sometimes that they just cannot get there. Road conditions happen.