# PopSci's 2nd Annual Brilliant 10

We patrolled the halls of academe. We eavesdropped on the research grapevine. We asked scientists: Whose work is just plain brilliant?

ERIK DEMAINE

Computational Origami: MIT

Paper folding as extreme mind-sport: pushing theoretical limits for the fun of it.

Erik Demaine was not your typical teenager. He went to college at 12, and by 14, he was a grad student at the University of Waterloo in Ontario, Canada. The work he did there sounds whimsical—making paper stars, angelfish and swans—but Demaine was confronting a thorny problem. Namely, which shapes can be made simply by folding a piece of paper, as many times as you like, then snipping off a corner and unfolding it. The answer, Demaine discovered, after two years of calculations and crumpled paper, is any shape you can think of. It is theoretically possible to create any two-dimensional straight-sided shape, from a triangle to the New York City skyline, with a single scissors cut.

That elegant theorem, completed in 1998, helped launch computational origami, a hybrid discipline—part computer science, part mathematics—that explores complex geometry concepts inspired by the Japanese art of paper folding. Demaine and a handful of colleagues pursue the mathematics of folding with the bravado of skateboarders. It is their extreme sport; they delight in the mysteries hidden within a simple sheet of paper. "Erik found a whole new pool of mathematical problems motivated by the field of origami," says mathematician Joseph Mitchell of SUNY Stony Brook in New York. "These are the kinds of questions that turn us on." Two years ago, at the ripe old age of 20, Demaine became an assistant professor at MIT.

The work has real-world value. Computational origami has helped engineers figure out how to unfold a telescope lens in outer space without damaging it, and determine the safest way to stow an airbag within a steering column. A grasp of the intricacies of folding could also help biologists understand proteins, the convoluted molecules that are prime actors in many diseases.

Home-schooled by his father, Demaine never had to distinguish between work and play. During his early years, the two traveled the U.S. by bus, stopping to live wherever they felt like it (Demaine's parents divorced when he was young). When Erik was 7 and obsessed with Nintendo, his dad suggested he learn to create his own games; he was soon into computer programming. In college, he found the age gap little hindrance—when his friends repaired to a bar, he just ordered ginger ale.

Demaine keeps countless origami problems percolating in his head, but his research ranges far beyond: He has co-authored more than 100 papers on such topics as data structures, bio-informatics and the mathematical obstacles to winning at Tetris. He's drawn to the unexpected: "You just look at something you normally see in a different way and think, Gee, I wonder if there's some mathematics behind that?"

—Laurie Goldman

single page
Page 5 of 11
Subscribe to Popular Science today, for less than \$1 per issue!

### June 2013: American Energy Independence

Five amazing, clean technologies that will set us free, in this month's energy-focused issue. Also: how to build a better bomb detector, the robotic toys that are raising your children, a human catapult, the world's smallest arcade, and much more.

Online Content Director: Suzanne LaBarre | Email
Senior Editor: Paul Adams | Email
Associate Editor: Dan Nosowitz | Email
Assistant Editor: Colin Lecher | Email
Assistant Editor: Rose Pastore | Email

Contributing Writers:

Kelsey D. Atherton | Email
Francie Diep | Email
Shaunacy Ferro | Email