Somewhere inside of your body right now, a delicate membrane is tearing open. Now a leak is springing, and fluids that were not supposed to have gotten past the membrane are gushing through at the point of the tear.
Fortunately, this leak is very small and you can't feel it. Unfortunately, your insides have sprung many other leaks since that first one. Fortunately, at the site of leak #1, several long, sticky molecules that were previously coiled like fruit roll-ups have come unrolled in the sudden torrent, and they're sticking to small solid fragments and forming little globs that are getting tangled up with other globs, and now the whole blob is plugging the leak, patching things up temporarily until the reinforcements arrive.
That this process plays out many millions of times each day is one of the marvels of the human body, but that's not why MIT materials scientist Alfredo Alexander-Katz and his colleagues have been studying it. Rather, the researchers want to replicate the process outside the human body, using slightly different ingredients to create synthetic materials that self-assemble and self-heal.
The group's first step was to figure out exactly how the initial stages of blood-clotting works. Though scientists already knew that a bio-polymer called von Willebrand factor--the "fruit roll-up" in the scenario above--is important to the process, no one understood just how or why the molecules manages to uncoil only when they're needed.
The key, it turns out, is speed: as the surrounding fluid begins to flow faster, gushing toward the leak, the shear force required to unroll the biopolymers increases too. As MIT news explains:
The self-assembling, self-healing aspect of the potential blood-clot-style materials is cool and fun, in a "we're-living-in-the-future" kind of way, but it's actually only part of what makes them attractive to materials scientists.
The other main attraction is that these kinds of composite materials--basically, polymers mixed together with other stuff--are extremely handy and amazing in lots of ways, but no one has figured out an easy way of manufacturing them.
No one, at least, except Nature, who fortifies the ceramic in bones and shells with bio-polymers that make them 3000 times stronger than they'd be without it. But bones and shells and most of Nature's other composites take a long time to form, so the secrets of their formulation wouldn't be that helpful to scientists. Blood clots, on the other hand, form in a matter of seconds.
Alexander-Katz and his colleagues are currently working to simulate the process using different kinds of molecules, and hope the work will be applied to create new kinds of inks, pigments, and coatings, as well as devices like self-healing tires.
140 years of Popular Science at your fingertips.
Each issue has been completely reimagined for your iPad. See our amazing new vision for magazines that goes far beyond the printed page
Stay up to date on the latest news of the future of science and technology from your iPhone or Android phone with full articles, images and offline viewing
Featuring every article from the magazine and website, plus links from around the Web. Also see our PopSci DIY feed
Engineers are racing to build robots that can take the place of rescuers. That story, plus a city that storms can't break and how having fun could lead to breakthrough science.
Also! A leech detective, the solution to America's train-crash problems, the world's fastest baby carriage, and more.


Online Content Director: Suzanne LaBarre | Email
Senior Editor: Paul Adams | Email
Associate Editor: Dan Nosowitz | Email
Contributing Writers:
Clay Dillow | Email
Rebecca Boyle | Email
Colin Lecher | Email
Emily Elert | Email
Intern:
Shaunacy Ferro | Email
"self-healing tires"
hey dude i think your tire is bleeding again...
---
(Type 0.72) = We are still just cleaver monkeys!
Vampires have known this for thousands of years.
Learning, that I am springing leaks millions times of a day and repair myself as much is rather startling!
It feel nervous should someone try to give me a hug.
I might burst forth leaks everywhere! ;)
Robot, I usually find your comments somewhat, I dunno, however, that was funny as hell. I actually got a visual and it was both hilarious AND disturbing. But I got a good chuckle out of it. What I'm most interested in is whether this discovery lends any help to the science of STOPPING unwanted blood clots from forming in a medical sense to help people with new medications and treatments. Also, in helping to induce clotting where you WANT it to occur. THAT, would be a tremendous boon to medical science and to surgical procedures.
Robot, you made me laugh out loud! Got lots of crazy looks.
my friend's step-mother makes $74 an hour on the computer. She has been without a job for ten months but last month her pay was $18043 just working on the computer for a few hours. Read more here Dhttp://www.bit90.com