When a 7.3-magnitude earthquake struck off Japan's eastern coast early Friday morning, we all feared a tsunami. But San Francisco gets earthquakes all the time, and we're not scared of a tsunami there. Why?

Watch Out For Tsunami!
Watch Out For Tsunami! Wikimedia Commons

When news broke of a 7.3-magnitude earthquake off the eastern coast of Japan early this morning, our first reaction was to fear a tsunami. The devastating earthquake that hit Japan last March and left 15,000 dead was in large part so damaging because of the ensuing tsunami, massive waves of ocean water which crashed up to six miles inland and over a hundred feet high. Luckily, today's earthquake and its aftershocks seem to have had minimal adverse effect, and the waves are not high enough to be damaging.

But it got us wondering. The San Francisco Bay Area, perhaps the most famous earthquake zone in the continental United States, is hit by dozens of small earthquakes every year--and only a century ago, pretty much the entire city of San Francisco was flattened by an earthquake. Yet we never worry about a San Francisco tsunami. Is that lack of foresight, or is something else going on entirely?

Tsunamis--the word derives from the Japanese characters meaning "harbor" and "wave"--are not like regular waves. Though they can be triggered by underwater landslides or even meteorological conditions, typically they're the result of immense energy being transfered by displaced ocean water. And what displaces ocean water? Earthquakes.

Tsunami Risk Zones
Tsunami Risk Zones:  Tsunami Alarm System

There are a few kinds of earthquakes, and the differences between the ones triggered by earthquakes is where we'll find our answer to this question. Most earthquakes are caused by the movement of the plates of Earth's crust moving against each other, which you all know, because you are all very bright. So there are a few kinds of "plate boundaries," and there are a few different types of "faults." The differences are confusing, because they're very very similar, but you can think about them generally that a plate boundary describes in a large general sense the movement of plates, and faults describe how chunks of plates interact with each other. Since the question of San Francisco vs. Japan is a large-scale question, we're going to talk with the large-scale language of plate boundaries.

So, plate boundaries! There are three main types: convergent, divergent, and transform. Convergent is when two plates smack into each other, divergent is when they move apart from each other, and transform is when they rub laterally against each other. We're putting aside divergent for now, because neither San Francisco nor Japan have to worry about them.

The movement of plates isn't smooth and it isn't clean; the plates stick to each other, pop loose, bounce backward of forward like a rubber band. (Yep, when you're talking about this much rock, it has a tendency to act elastic.) The most important term you need to know about convergent plates is subduction. Subduction is when an oceanic plate smashes into a land plate (or "continental" plate). Oceanic plates are made of heavier rock, so when the Pacific Plate smashed into Japan, it slipped under the Japanese land plate. That's not how all convergent boundaries work; sometimes, two continental plates will smash into each other and built a mountain range at the smack-point, which is what's happening between India and Asia right now. But subduction doesn't give us the Himalayas--just a ton of trouble.

Subduction does crazy things to the seafloor. Remember that earthquakes aren't smooth; these two plates have been smashing together for eons, sticking in places, being jammed down into the Earth's mantle, and all of a sudden, POP! Parts of the seafloor behind the contact point are forced up, in weird, non-uniform spots. If you had a piece of cardboard hanging off the edge of a table, and folded the edge down, it'd force some of the cardboard still on the table upwards. That's kind of what's happening here; it's not only where the two plates smash together that sees the impact. But a whole mess of the seafloor very suddenly pops up.

Subduction Diagram
Subduction Diagram:  via Long Island University

That displaced an absurd amount of water, and water carries energy very efficiently. Imagine jumping into a bathtub--the water reacts pretty violently. So you've got tons and tons of water, moving towards shore. As it gets closer to shore, it picks up speed for awhile, because there's less room for the water to be in, like when you put your thumb partly over a spurting hose. But eventually it starts to slow down due to friction with the ocean floor. Here's where things get ugly: the water may be slowing down, but its amplitude is increasing. (Amplitude refers to the height of this slow-brewing wave or series of waves.) So it slows down a bit, but that doesn't make this any less dangerous, because the wave is getting taller at the same time it's scrunching together. Then it his the shore, and it's a tsunami. A huge goddamn wave.

That's what happens in Japan. But it's not what happens in San Francisco.

* * *

San Francisco and Japan are both at risk of earthquakes because they lie close to plate boundaries. But they're not the same kind of plate boundaries. Remember those three types, convergent, divergent, and transform? Japan's dealing with a single convergent boundary, but San Francisco is staring down multiple faults, and the ones that matter are transform faults.

San Francisco's seismic situation is incredibly complicated and, frankly, kind of a mess. We're not dealing with one fault line and two plates here, even though it's commonly referred to simply as the San Andreas Fault. The San Andreas Fault is the line between the Pacific Plate (which is oceanic) and the North American Plate (which is a land or continental plate), and it's a transform boundary. That means instead of smashing into each other, those two plates are sliding past each other, violently scraping and getting stuck and popping free. The last time the San Andreas really let loose was in 1906, which any Northern Californian will know as the Big One. The 1906 earthquake destroyed 80% of San Francisco and killed thousands.

California and the Mendocino Triple Junction
California and the Mendocino Triple Junction:  Google Earth, modified by Emily Elert

But if you follow the San Andreas northward, you'll eventually get to a fork, where three faults all meet. It's called a "triple junction," and its where a small oceanic plate called the Gorda enters the fray in an everyone-loses tectonic brawl. The Gorda's boundary with the North American plate is actually a convergent boundary, just like the one going on in Japan, but the Gorda plate is so small that it has very little leverage to cause all that much turmoil. It's driven so far down into the earth that it's mostly locked there, stuck unmoving. But that's definitely not a safe place to be; that fault line between the Gorda and North American plates is called the Cascadia Subduction Zone, and it's one of very few subduction zones that are capable of delivering a "megathrust" earthquake of more than 8.5 magnitude. There hasn't been one there for three hundred years, but there certainly will be another eventually (although it probably will hit the Pacific Northwest and British Columbia harder than San Francisco).

So, San Andreas and Cascadia, that's two of the three. The last one, where the Gorda and Pacific plates meet, is called the Mendocino fault, which is also a transform (slipping and sliding) boundary; jolts along this fault regularly cause earthquakes in northern California.

Of the three main fault lines that would affect San Francisco, two out of the three are transform faults, and one is currently (but ominously) inactive. Transform boundaries are just as dangerous to people on land as convergent boundaries; they still shake the hell out of the land, which can lead to fires and floods and all kinds of disaster. But one thing they don't do is abruptly displace ocean water, because they're moving laterally rather than up and down. So, no displaced water, no tsunami. And that's why nobody's worried about a giant wave turning Golden Gate Park into a swamp.

Emily Elert contributed a LOT to this article.

11 Comments

Of course they use an OS X wallpaper as the featured image =P Haha.

Of course this is all hogwash. San Francisco can indeed be destroyed by a tsunami--just not likely one caused by an earthquake.

San Francisco--and the entire Western coach are at danger from the same thing that endangers the entire Eastern coast--tsunami's caused by massive landslides.

The Eastern coast could be completely devastated by a massive piece of land next to a volcano in the La Palma island of the Canary Island chain. If this huge chunk of land slides abruptly into the sea it would cause a tsunami over 1000 feet high and when it hits the East coast over 200 feet high--completely drowning EVERYONE in Florida and most of the East Coast similar to the ELE event in the movie 'Deep Impact'.

In this same token--San Francisco and the entire Western Coast of America are at threat from a similar landslide on the big island of Hawaii. In the past--it has created tsunami's hundreds of feet high and it has devastated Japan, Alaska, Western Canada, Western USA and more.

That is the biggest tsunami threat facing San Francisco unless you also consider meteors and comets--which they can be thousands of feet high if mile wide and hits the Pacific Ocean or any ocean for that matter.

@zwgrad09
The image is called 'The Great Wave' and is a 19th century painting by a Japanese artist by the name of Hokusai.

gizmowiz,
I find your comments, perspective and the information you offer very interesting.

Pity you did not mark a couple of towns on the map, could have helped with orientation. Thank you for your contribution gizmowiz

Taking a cursory look at what mega-tsunamis are, they are somewhat misnamed. These waves created by landslides from volcanic islands, while initially having potentially huge wave heights, move far less water mass than a serious "real" tsunami. They have had devastating effects when occurring in smaller bodies of water because the land is approached before the intervening water body can absorb the wave height. It seems to me that on ocean scales, they are really micro-tsunamis.

I visualize it as someone jumping into a 50-meter pool to create a wave that will reach the other end (pretty difficult). Compare that to the wave generated by a wave machine. Less dramatic but moving a lot more water which is much more significant at the other end. Of course on the jumper's side, a huge wave crashes over the side because of the short distance to "land".

New in town, I had just come out of the Port Alberni arena to hear their Tsunami warning test. Although impressive, this warning will come from bobbing buoy’s placed around the Pacific Ocean and a time factor would prohibit a warning to boats and communities out of range.

Ideally a Tsunami warning should be executed when a strong earth quake is detected. Problem is that these people do not know what causes an Earthquake or Tsunami and in issuing a warning are damned if they do and damned if they don’t.

Tone of sound caused by erratic Earth tipping (magnetic pole movement) interacting with the Earths force magnetisim causes an earthquake that can also cause a tsunami “except” in these earth tippings it takes moon and ocean exposure to create the tsunami. It’s the reason why you can have a tsunami or rouge wave with out an earthquake and why an earthquake without a tsunami.

@BruceVoigt- I agree with your comment about insufficient warning systems. No matter the cause of the Tsunami, the ability for humanity to prevent damage to infrastructure is null and void, but we should at least be able to warn the people of an area so that they could evacuate inland and out of range.

Understanding the cause of said tsunamis is great, and does in fact help us know when and where one will hit, but we need to start thinking about saving the lives of those in the danger areas a little sooner so we don't have the types of disasters we have seen throughout the history of our species. We are technologically advanced enough to have cell phone coverage in almost all of the world, but unable to tell people that they are about to be swept clean by surging waters?

Thank you for this interesting article.

Not that I care, it doesn't bother me in the least, but, since when did Popular science start including the term, goddamn, in their articles, or was I the only one who saw that? It does seem rather unprofessional although it certainly clearly demonstrates the intensity of the writers intent. Heh.

Crescent City in California always get hit badly by tidal waves. It is the location and shape of harbor.
Also, Oregon is waiting to get hit. Lot of offshore faults up there.,,

http://cccarto.com/faults/orfaults/


140 years of Popular Science at your fingertips.



Popular Science+ For iPad

Each issue has been completely reimagined for your iPad. See our amazing new vision for magazines that goes far beyond the printed page



Download Our App

Stay up to date on the latest news of the future of science and technology from your iPhone or Android phone with full articles, images and offline viewing



Follow Us On Twitter

Featuring every article from the magazine and website, plus links from around the Web. Also see our PopSci DIY feed


April 2013: How It Works

For our annual How It Works issue, we break down everything from the massive Falcon Heavy rocket to a tiny DNA sequencer that connects to a USB port. We also take a look at an ambitious plan for faster-than-light travel and dive into the billion-dollar science of dog food.

Plus the latest Legos, Cadillac's plug-in hybrid, a tractor built for the apocalypse, and more.


Online Content Director: Suzanne LaBarre | Email
Senior Editor: Paul Adams | Email
Associate Editor: Dan Nosowitz | Email
Assistant Editor: Colin Lecher | Email
Assistant Editor:Rose Pastore | Email

Contributing Writers:
Rebecca Boyle | Email
Kelsey D. Atherton | Email
Francie Diep | Email
Shaunacy Ferro | Email

circ-top-header.gif
circ-cover.gif