NASA engineers working on the James Webb Space Telescope are doing a lot of things from scratch — they’ve had to design new mirrors and a foldy space cocoon, for instance — but their newest work may take the cake: To survive the coldest reaches of space, they invented a brand-new composite material. They nicknamed it unobtanium.
The heart of the Webb Telescope is the car-sized Integrated Science Instrument Module, which will hold all the telescope’s instruments, packed tightly together. The scope’s high-precision optics need stability, so the chassis must be tough enough to avoid warping in the extreme deep freeze of 1 million miles from Earth. But it also must be tough enough to survive the stress of launch.
Engineers combed the scientific literature to find a material that could meet those standards, and came up with nothing. They decided they had to whip something up, so they used mathematical models to measure several ingredients. Finally, they found two composite materials that would yield something called a carbon fiber/cyanate-ester resin system.
It was ideal for making the chassis’ 3-inch tubes, but the engineers still had to figure out how to put them together — the ISIM has about 900 components. Ultimately, they used several methods, including nickel-alloy fittings, clips, and special composite plates joined with an adhesive that they also invented.Once they made all this, they had to figure out how to test it, because the three-story Space Environment Simulator at Goddard Space Flight Center wasn’t cold enough.
After it launches sometime in 2014, the Webb telescope will chill out at a Lagrange point, which is a special point in space where the gravitational fields of the Earth and moon are in equilibrium, allowing a satellite to sit between them. Shielded from the sun by a massive space umbrella, the telescope’s instruments will be exposed to daily temperatures around 39 Kelvin, or -389.5 degrees Fahrenheit. The simulator can only reach about 100 K, which is sufficient for testing most other space equipment.
But the team wanted to chill the truss to 27 K, roughly equivalent to Pluto’s surface temperature, just to make sure it wouldn’t crack. So they built a shroud that resembled a tunafish can and inserted it into the chamber. Once the air was removed from the test chamber, they pumped helium into the shroud to cool off the truss to 27 K.
During 26 days of tests, it didn’t crack. As the mathematical models showed, it shrunk by 170 microns — about the width of a needle — once the temperature reached 27 K. NASA’s warp limit was 500 microns, so the super-material proved its worth.
No sweat, said Jim Pontius, the ISIM lead mechanical engineer.
“The technology challenges are what attracted the people to the program,” he said.
[NASA]
140 years of Popular Science at your fingertips.
Each issue has been completely reimagined for your iPad. See our amazing new vision for magazines that goes far beyond the printed page
Stay up to date on the latest news of the future of science and technology from your iPhone or Android phone with full articles, images and offline viewing
Featuring every article from the magazine and website, plus links from around the Web. Also see our PopSci DIY feed
For our annual How It Works issue, we break down everything from the massive Falcon Heavy rocket to a tiny DNA sequencer that connects to a USB port. We also take a look at an ambitious plan for faster-than-light travel and dive into the billion-dollar science of dog food.
Plus the latest Legos, Cadillac's plug-in hybrid, a tractor built for the apocalypse, and more.

Online Content Director: Suzanne LaBarre | Email
Senior Editor: Paul Adams | Email
Associate Editor: Dan Nosowitz | Email
Assistant Editor: Colin Lecher | Email
Assistant Editor:Rose Pastore | Email
Contributing Writers:
Rebecca Boyle | Email
Kelsey D. Atherton | Email
Francie Diep | Email
Shaunacy Ferro | Email
Haha! First post.
"Welcome! to the Federation Starship SS Buttcrack!!!"
Otherwise - article is an awesome example of Nasa doing their brand of magic again - creating new tech for space purposes has always been NASAs strength....but seems like last couple decades were somewhat sluggish on the magic front....
This is exactly why NASA should be assigned the task of building an outpost on the moon. Think of all of the new technologies we would get? Anyone else remember the Apollo program?
FlexGunship- What's this Apollo you speak of?
Also, out of context quote for the day:
"NASA’s warp limit was 500..." Let's see those Klingons beat that.
@flexgunship
I agree, I think NASA has the experience and smarts to build an awesome outpost on the moon and space vehicles should be opened up to the private sector. Let NASA focus its power on one amazing project and let the creative minds of the rest of the world evolve space ship technology
NASA Engineers: "Eh, let's just invent something to fix it. No biggie."
I am curious about whether this process could help tailor pre-existing materials to work better in places they're already used.
@pheonix1012
I am a self-proclaimed Trekkie, and that was totally uncalled for. And commenting just to have the first post makes you come off as ignorant. Please actually contribute to the topic at hand.