Paging Frodo

Radioactive Volcanoes Superstock; Getty Images

Dumping all our nuclear waste in a volcano does seem like a neat solution for destroying the roughly 29,000 tons of spent uranium fuel rods stockpiled around the world. But there’s a critical standard that a volcano would have to meet to properly dispose of the stuff, explains Charlotte Rowe, a volcano geophysicist at Los Alamos National Laboratory. And that standard is heat. The lava would have to not only melt the fuel rods but also strip the uranium of its radioactivity. “Unfortunately,” Rowe says, “volcanoes just aren’t very hot.”

Lava in the hottest volcanoes tops out at around 2,400˚F. (These tend to be shield volcanoes, so named for their relatively flat, broad profile. The Hawaiian Islands continue to be formed by this type of volcano.) It takes temperatures that are tens of thousands of degrees hotter than that to split uranium’s atomic nuclei and alter its radioactivity to make it inert, Rowe says. What you need is a thermonuclear reaction, like an atomic bomb—not a great way to dispose of nuclear waste.

Volcanoes aren’t hot enough to melt the zirconium (melting point 3,371˚) that encases the fuel, let alone the fuel itself: The melting point of uranium oxide, the fuel used at most nuclear power plants, is 5,189˚. The liquid lava in a shield volcano pushes upward, so the rods probably wouldn’t even sink very deep, Rowe says. They wouldn’t sink at all in a stratovolcano, the most explosive type, exemplified by Washington’s Mount St. Helens. Instead, the waste would just sit on top of the volcano’s hard lava dome—at least until the pressure from upsurging magma became so great that the dome cracked and the volcano erupted. And that’s the real problem.

A regular lava flow is hazardous enough, but the lava pouring out of a volcano used as a nuclear storage facility would be extremely radioactive. Eventually it would harden, turning that mountain’s slopes into a nuclear wasteland for decades to come. And the danger would extend much farther. “All volcanoes do is spew stuff upward,” Rowe says. “During a big eruption, ash and gas can shoot six miles into the air and afterward circle the globe several times. We’d all be in serious trouble.”

Think you can stump us? Send your questions to fyi@popsci.com.

Comments


140 years of Popular Science at your fingertips.



Popular Science+ For iPad

Each issue has been completely reimagined for your iPad. See our amazing new vision for magazines that goes far beyond the printed page



Download Our App

Stay up to date on the latest news of the future of science and technology from your iPhone or Android phone with full articles, images and offline viewing



Follow Us On Twitter

Featuring every article from the magazine and website, plus links from around the Web. Also see our PopSci DIY feed


February 2013: How To Build A Hero

Engineers are racing to build robots that can take the place of rescuers. That story, plus a city that storms can't break and how having fun could lead to breakthrough science.

Also! A leech detective, the solution to America's train-crash problems, the world's fastest baby carriage, and more.



Online Content Director: Suzanne LaBarre | Email
Senior Editor: Paul Adams | Email
Associate Editor: Dan Nosowitz | Email

Contributing Writers:
Clay Dillow | Email
Rebecca Boyle | Email
Colin Lecher | Email
Emily Elert | Email

Intern:
Shaunacy Ferro | Email

circ-top-header.gif
circ-cover.gif